NEOLIGNANS FROM MAGNOLIA KACHIRACHIRAI

KAZUO ITO, KAZUHIKO ICHINO, TOSHIYUKI IIDA and JENGSHIOW LAI*

Faculty of Pharmacy, Meijo University, Yagoto, Tenpaku-ku, Nagoya 468, Japan, *School of Chemistry, Jingyi Providence College, Fuxing Road, 3-170, Taichung, Republic of China

(Received 20 February 1984)

Key Word Index-Magnolia kachirachirai, Magnoliaceae, neolignan, benzofuranoid, kachirachirol-A, kachirachirol-B, licarin-A, eupomatenoid

Abstract—Two new neolignans named kachirachirol-A and B were isolated from the leaves of Magnolia kachirachirai and their chemical structures determined to be 2-(p-hydroxyphenyl)-7-methoxy-3-methyl-5-trans-propenylbenzofuran and rel-(2S,3S)-2-catechyl-2,3-dihydro-7-methoxy-3-methyl-5-trans-propenylbenzofuran

INTRODUCTION

Previously, Li and El-Feraly [1] reported the isolation of three benzofuranoid neolignans eupomatenoid-7 (2), (\pm) -licarin-B (4) and (\pm) -licarin-A (5) and a tetrahydrofuranoid lignan (+)-galbacin (9) from the leaves of Magnolia kachirachirai (Chinese name Heng-chun mulan), the indigeneous magnoliaceous plant in Taiwan In the course of the reinvestigation of the dried leaves of this plant, cight neolignans (1-8) were isolated, two of them (3 and 7) were new compounds We now report on the structure elucidation of these new neolignans named kachirachirol-A and B

RESULTS AND DISCUSSION

The first compound kachirachirol-A (3), $C_{19}H_{18}O_3$, $([M]^+ m/z 294)$, colourless prisms, gave a bluish colour with ferric chloride ethanol The IR spectrum (CHCl₃) showed the presence of a hydroxyl at 3530 cm⁻¹ and phenyl groups at 1605, 1510 cm⁻¹ The ¹H NMR spectrum showed the following signals $\delta 191$ (3H, d, J = 6 Hz, =CH- $\frac{CH_3}{s}$, 2 40 (3H, s, = $\frac{C}{c}$ - $\frac{CH_3}{s}$), 3 98 (3H, s,

Ar-OMe), 574 (1H, s, OH), 619 (1H, dq, J = 6, 16 Hz, $-CH=CH-CH_3$), 6 53 (1H, d, J=16 Hz, Ar-CH=CH-), 6 98 (2H, d, J = 9 Hz, Ar-H), 7 30, 7 32 (2H, each d, J= 15 Hz, Ar-H) and 737 (2H, d, J = 9 Hz, Ar-H) The spin-spin coupling constants (J = 9 Hz and J = 15 Hz) in the aromatic region were due to meta (δ 7 30 and 7 32) and ortho ($\delta 6$ 98 and 7 37) coupling These spectral data of 3 are very similar to those reported for eupomaterioid-1 (1) [2, 3] except for the aromatic region in the ¹HNMR spectrum On acetylation with acetic anhydride in pyridine, 3 gave a monoacetyl derivative These results suggested that the structure of 3 must be 2-(p-hydroxyphenyl)-7-methoxy-3-methyl-5trans-propenylbenzofuran

The second substance kachirachirol-B (7), C₁₉H₂₀O₄ $(\lceil M \rceil^+ m/z 312)$, colorless needles, gave a bluish color with ferric chloride-ethanol and a brown color with titanium trichloride in methanol-pyridine [4] These color tests suggest that 7 possesses a catecholic character The IR spectrum (CHCl₃) of 7 showed the presence of a hydroxyl at 3550 cm⁻¹ and phenyl groups at 1610, 1520 and 1495 cm $^{-1}$ The UV spectrum (MeOH) showed absorption at $\lambda_{\rm max}$ 268 and 272 nm indicating the presence of a conjugated benzenoid system. The $^{1}{\rm H}$ NMR spectrum showed the following signals $\delta 1$ 34 (3H, d, J = 7 Hz, $-CH-CH_3$), 1 85 (3H, d, J = 6 Hz, $=CH-CH_3$), 3 2–3 5 (1H, m, -CH-CH₃), 3 84 (3H, s, Ar-OMe), 5 03 (1H, Ar d, J = 9 Hz, Ar-CH-CH-), 5 2-5 7 (2H, br s, OH), 6 05

$$d$$
, $J = 9$ Hz, Ar-CH-CH-), 52-57 (2H, br s, OH), 605
OAr

 $(1H, dq, J = 6, 16 Hz, -CH=CH-CH_3), 6 36 (1H, d, J =$ 16 Hz, Ar-CH=CH-) and 674-690 (5H, m, Ar-H) The spin-spin coupling constant (J = 9 Hz) between the two methine protons to be assigned for H-2 and H-3 ($\delta 5.03$ and 32-35) indicates the trans vicinal coupling of the dihydrofuran ring These spectral data of 7 also resembled closely those reported for (\pm) -licarin-B (4) except for the absence of a methylenedioxy group On methylenation with dichloromethane and sodium hydroxide in DMSO, 7 gave a methylenedioxy derivative which was identical with (-)-licarin-B (4) O-Methylation with potassium carbonate and methyl iodide in acetone, 7 gave an 0,0-dimethyl ether which was identical with (-)-acuminatin (6) derived from (-)-licarin-A (5), and not (-)- but (+)-acuminatin as described in ref [5] These results established that the structure of is rel-(2S,3S)-2-catechyl-2,3-dihydro-7-methoxy-3methyl-5-trans-propenylbenzofuran

In addition to the two new compounds above, six known neolignans eupomatenoid-1 (1), eupomatenoid-7 (2), (-)-licarin-B (4), (-)-licarin-A (5), (-)-acuminatin (6) and (+)-guaracin (8) [6] and a sesquiterpene caryophyllene epoxide [7, 8] were isolated and characterized from this plant

EXPERIMENTAL

Mps are uncorr IR spectra were measured in CHCl3 and UV spectra in MeOH 1H NMR spectra were recorded at 100 MHz using CDCl₃ as solvent and TMS as int standard, chemical shifts are reported in δ (ppm) values

Extraction and separation of compounds The MeOH extract of dried leaves (3 27 kg) of M kachirachirai Dandy collected in June 1982 in Kending Tropical Botanical Garden, Republic of China was divided into n-hexane (112 g) and CHCl₃ soluble

2644 K. Ito et al

1 R,
$$R^1 = -OCH_2O -$$

2 $R = OMe, R^1 = OH$

3 $R = H, R^1 = OH$

3a R = H, R1 = OAc

4 R.R1 =
$$-CH_2-$$

5
$$R = Me, R^1 = H$$

6
$$R = R^1 = Me$$

fractions (80 g) The former fraction gave eupomatenoid-1 (1, 2 3 g),(-)-licarin-B (4, 30 mg) and caryophyllene epoxide (44 mg) The latter fraction was chromatographed on a column of silica gel (600 g) using C_6H_6 with gradually increasing proportions of EtOAc as eluent and further purified by prep TLC The first fraction (C_6H_6) gave eupomatenoid-1 (1, 23 mg), eupomatenoid-7 (2, 2 16 g), kachirachirol-A (3, 5 mg), (-)-licarin-B (4, 33 mg), (-)-licarin-A (5, 413 mg), (-)-acuminatin (6, 16 mg) and (+)-guaiacin (8, 508 mg) The second fraction (C_6H_6 -EtOAc, 20 1) gave kachirachirol-B (7, 217 mg)

Kachurachirol-A [2-(p-hydroxyphenyl)-7-methoxy-3-methyl-5-trans-propenylbenzofuran] (3) Colourless prisms (CHCl₃), mp 103–104° IR v_{max} cm⁻¹ 3530, 1605, 1510 MS m/z 294 [M]⁺ (C₁₉H₁₈O₃), 279, 251, 234 ¹H NMR δ1 91 (3H, d, J = 6 Hz, propenyl Me), 2 40 (3H, s, Me-3), 3 98 (3H, s, OMe-7), 5 74 (1H, s, OH), 6 19 (1H, dq, J = 6, 16 Hz, propenyl β-H), 6 53 (1H, d, J = 16 Hz, propenyl α-H), 6 98 (2H, d, d = 9 Hz, H-3', H-5'), 7 30, 7 32 (2H, each d, d = 1 5 Hz, H-4, H-6), 7 37 (2H, d, d = 9 Hz, H-2', H-6')

Kachırachırol-B [rel-(2S, 3S)-2-catechyl-2,3-dihydro-7-methoxy-3-methyl-5-trans-propenylbenzofuran] (7) Colourless needles (C_6H_6), mp 64–66° [α]_D -600° (CHCl₃, c065) IR ν_{max} cm⁻¹ 3550, 1610, 1520, 1495 UV λ_{max} nm 212, 268, 272 MS m/z 312 [M]⁺ ($C_{19}H_{20}O_4$), 297, 279, 269, 256 ¹H NMR δ1 34 (3H, d, d) = 7 Hz, Me-3), 1 85 (3H, d, d) = 6 Hz, propenyl Me), 3 2–3 5 (1H, d), H-3), 3 84 (3H, d), OMe-7), 5 03 (1H, d), d0 = 9 Hz, H-2), 5 2–5 7 (2H, d07 s, OH), 6 05 (1H, d07 d, d07 d, 6 74–6 90 (5H, d07 Ar–H)

Kachırachırol-A monoacetate (3a) A mixture of kachırachırol-A (5 mg), Ac₂O (1 ml) and pyridine (1 ml) was allowed to stand overnight at room temp A few pieces of crushed ice were added and the soln extracted with CHCl₃ The CHCl₃ extract was washed with H₂O and dried (Na₂SO₄) Concn of this soln gave a colourless oil (2 mg) IR $v_{\rm max}$ cm⁻¹ 1760, 1600, 1590, 1510 MS m/z 336 [M]⁺ (C₂₁H₂₀O₄), 294, 279, 251 ¹H NMR δ1 90 (3H, d, J = 6 Hz, propenyl Me), 2 32 (3H, s, OCOMe-4'), 2 44 (3H s, Me-3), 3 92 (3H, s, OMe-7), 6 22 (1H, dq, J = 6, 16 Hz, propenyl β-H), 6 54 (1H, d, J = 16 Hz, propenyl α-H), 7 12 (2H, d, J = 8 Hz, H-3', H-5'), 7 32, 7 41 (2H, each d, J = 2 Hz, H-4, H-6), 7 40 (2H, d, J = 8 Hz, H-2', H-6')

Methylenation of kachirachirol-B (7) NaOH powder (10 mg) and CH₂Cl₂ (1 ml) were added to a soln of kachirachirol-B (7) (20 mg) in DMSO (2 ml) and the mixture heated at 110° for 3 hr under a N₂ atmosphere After cooling and dilution with H₂O, the reaction mixture was extracted with CHCl₃ and the CHCl₃ extract washed with H₂O, then dried (Na₂SO₄) Removal of solvent gave a residue, which was dissolved in CHCl₃. The soln was filtered through a short silica gel column and evapd to dryness to give a colourless oil (10 mg), $[\alpha]_D$ -15 3° (CHCl₃, c 165) The IR and ¹H NMR spectra of this compound were superimposable on those of (-)-licarin-B (4)

O-Methylenation of kachirachirol-B (7) MeI (33 mg) and anhydrous K₂CO₃ (16 mg) were added to a soln of kachirachirol-B (7) (9 mg) in Me₂CO (5 ml) and the mixture refluxed overnight The reaction mixture was filtered and concd, the residue dissolved in CHCl₃ and the soln washed with H₂O then dried (Na₂SO₃) Concn of this soln gave colourless plates (6 mg), mp

107-108 5°, $[\alpha]_{D}$ -38 3° (CHCl₃, c 0 30) The IR and ¹H NMR spectra of this compound were indistinguishable from those of (-)-acuminatin (6)

REFERENCES

- 1 Li, W-S and El-Feraly, F S (1981) Proc Natl Sci Counc B, ROC 5, 145
- 2 Bowden, B F, Ritchie, E and Taylor, W C (1972) Aust J Chem. 25, 2659
- 3 McCredie, R S, Ritchie, E and Taylor, W C (1969) Aust J Chem. 22, 1011
- 4 Weygand, F and Csendes, E, (1952) Chem. Ber 85, 45
- 5 El-Feraly, F S, Cheatham, S F, Hufford, C D and Li, W-S (1982) Phytochemistry 21, 1133
- 6 Majumder, P L, Chatterjee, A and Sengupta, G C (1972) Phytochemistry 11, 811
- 7 Fujita, M, Itokawa, H and Sashida, Y (1973) Yakugaku Zasshi 93, 415
- 8 Hashizume, T and Sakata, I (1970) Agric Biol Chem 34, 638